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Abstract 

The aim of this paper is to estimate scale parameter β of Log Gamma distribution by 

using inverse Gamma and inverse Chi-Square priors. The measures of loss function; Squared 

error loss function (SELF) and Quadratic loss function (QLF) are compared through the 

estimates of the scale parameter β for best results. Wolfram Mathematica 11 was used for the 

analysis. The results showed that estimates of the scale parameter decrease with increase in 

sample size tending to the actual value of the scale parameter. This indicates an increase in 

the estimate of shape parameter under loss functions being considered. However, inverse chi 

square prior outperforms inverse gamma prior. The posterior risks for QLF are least compared 

to those under SELF. The Quadratic loss function therefore, appeared to be better than 

Squared error loss function. 
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1. Introduction  

Bayesian method of estimation is being taken into consideration in this research work. This 

method has numerous merits over the conventional approach. Bayesian inference emerges out 

of the concept in Bayes’ rule which utilizes a prior knowledge about the distribution of a given 

parameter 𝛽 as well as actual observation of that distribution to come up with a posterior 

distribution that helps us upgrade our previous understanding. Ahmad et al. (2016) studied the 

Bayesian estimates of parameters of length biased Nakagami distribution by using different 

loss functions and different priors. The results showed that the length biased Nakagami 
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distribution gives better output compared to Nakagami and Rayleigh distributions. Terna and 

Unna (2018) estimate the shape parameter of Weibull Frechet distribution by using Bayesian 

approach. Two non-informative priors and three different loss functions were involved. The 

corresponding posterior distribution was drive for the shape parameter of the Weibull Frechet 

distribution. The bays’ estimators and their corresponding bays’ risk were also drive using the 

three selected loss functions. A comprehensive simulation ideology was used to compare the 

performance of the bays’ estimates evaluated in the study in order to find out the combination 

of loss function and prior with a minimum bays’ risk. Hence, the study concluded that 

Quadratic loss function under either of the two non-informative prior is the best when 

estimating the parameters in the study. 

Dikko and Mathew (2018) used a Bayesian approach to estimate the scale parameter of a 

Frechet distribution the posterior distribution was drive using two non-informative priors 

Uniform and Jeffreys priors under four loss functions (Squared error, Weighted balance, 

Quadratic and Precautionary loss functions). The study revealed that Weighted balance loss 

function when used with uniform prior provides the least posterior risk. Loaiy and Huda (2019) 

in their study obtained the bays’ estimators for the scale and shape parameters under Entropy 

loss function assuming exponential and Gamma priors for the scale and shape parameters 

respectively. The study revealed that the bays’ estimates under Entropy loss function performs 

better than the other estimates in all cases.   Innocent et al. (2020) uses a 3-parameter 

distribution; Weibull- Lindley distribution and the priors involved are Gamma, Jeffrey’s and 

Uniform priors under Quadratic loss function, squared error loss function and Precautionary 

loss function. The result revealed that Quadratic Loss function (QLF) provides estimates with 

the least MSE's under the prior distributions involved.  

Bayes estimates decrease with an increase in the sample size and approaches the actual value 

of scale parameter. Hence the consistence of the Bayes estimate was proved matched with the 

theory of Bayesian analysis (Zaka and Akhter, 2014 & feroze, 2012). Keeping the scale 

parameter consisted, the posterior risk decreases and the shape parameter increases under all 

priors and loss functions, and this is similar with the outcome obtained by (Feroze and Yaseen, 

2015). In this research, the scale parameter of Log gamma distribution was to estimate by using 

inverse gamma and inverse chi square priors under the Quadratic and Squared error loss 

functions respectively. 

 

2. Material and Methods  

2.1. Posterior distribution using inverse Gamma priors 
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Inverse Gamma Prior is given by 
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Substituting equations (3) and (4) into equation (1) will yield 
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By substitution, equation (6) becomes 
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2.2. Posterior distribution using inverse Chi-square prior 
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Substituting equations (3) and (10) into equation (1) will yield 

( )












+−−−−









+−−−−

=

=

=

0

ln1
2

11
2

ln1
2

11
2

1

1















d

xp

e

e
n

i
i

n

i
i

x
vn

x
vn

     (11) 

Let  












+−−−−
==

0

ln1
2

11
2

1 


 de
n

i
ix

vn

B                                           (12) 

 and 



1
ln

2
1

1









+= 

=

n

i

ixu                                                    (13) 




dxdu
n

i

i 2
1

1
ln

2

1








+−= 

=

 

Therefore  

u
x

n

i

i

1
ln

2
1

1









+= 

=

                                                        (14) 









+

=


=

n

i

ix

du
d

1

2

ln
2

1


  du

x

u
x

n

i

i

n

i

i









+

















+

=





=

=

1

2

1

ln
2

1

1
ln

2

1

                               (15) 
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2.3. Bayesian Estimator under SELF using Inverse Gamma prior 
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, SELFSELFL  −= ,      ( ) ESELF =       and     ( ) ( )  dxpE =  

From equation 10 
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2.4.Bayes estimate under SELF using inverse chi-square prior  
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2.5. Bayes estimator under QLF using inverse gamma prior 
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2.6. Bayes estimator under QLF using inverse chi-square prior 
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2.7. Posterior risk under SELF  
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2.7.2 Posterior risk using inverse chi square prior 
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2.8. Posterior risk under QLF 
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2.8.1 Posterior risk using inverse gamma prior 
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2.8.2 Posterior risk using inverse chi square prior   
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3. Analysis 

The scale parameter of log gamma distribution was estimated under Bayesian framework, in 

this section, Monte Carlo simulation (MCMC) is carried out to obtain the numerical value of 

the Bayes estimate and posterior risk with sample sizes (n = 5, 20 and 50). In inverse gamma 

prior, (m, a) = (0.5, 1.5) and (1, 1) are values of the hyper parameters used. For inverse chi 

square prior, the hyper parameter v takes the values 0.5 and 1.5, using the values of shape and 

scale parameter: 

(𝛼, 𝛽) ∈ {(0.5,0.5), (0.5,1), (0.5,1.5), (1,0.5), (1.5,0.5)} 
The estimated parameter β under specified actual values shape and scale parameter (λ, β), and 

different value of hyper parameters (m, a) for inverse gamma and for inverse chi square (v), 

are shown on the tables below, under different priors and loss functions. 

Table ١: Estimates of β and Risk under SELF using Inverse Gamma prior (0.5, 1.5) 

m = 0.5 and a = 1.5 

N 
α = 0.5 

β = 0.5 

α = 0.5 

β = 1 

α = 0.5 

β = 1.5 

α = 1 

β = 0.5 

α = 1.5 

β = 0.5 

5 
0.583623 1.00031 1.41821 0.548464 0.528996 

0.206106 0.636373 1.32547 0.076208 0.044148 

20 
0.524544 1.00304 1.4773 0.514145 0.507866 

0.031391 0.115214 0.250885 0.014171 0.009014 

50 
0.511862 0.999912 1.48735 0.504482 0.503648 

0.011086 0.042398 0.09382 0.005241 0.00345 

 

Table ٢: Estimates of β and Risk under SELF using Inverse Gamma prior (1,1) 

m = 1 and a = 1 

N 

α = 0.5 

β = 0.5 

α = 0.5 

β = 1 

α = 0.5 

β = 1.5 

α = 1 

β = 0.5 

α = 1.5 

β = 0.5 

5 

0.58578 1.00302 1.41126 0.546613 0.531913 

0.206803 0.644219 1.29829 0.0757508 0.0446906 

20 0.52466 0.996265 1.46984 0.511241 0.509691 
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0.0313543 0.114052 0.24912 0.0140242 0.00907758 

50 

0.507491 0.996783 1.48906 0.50606 0.502663 

0.0108983 0.0420964 0.0940776 0.00527248 0.00343664 

 

Table ٣: Estimates of β and Risk under QLF using Inverse Gamma prior (0.5, 1.5) 

m = 0.5 and a = 1.5 

N 

α = 0.5 

β = 0.5 

α = 0.5 

β = 1 

α = 0.5 

β = 1.5 

α = 1 

β = 0.5 

α = 1.5 

β = 0.5 

5 

0.351175 0.598303 0.849588 0.399296 0.425448 

0.2 0.2 0.2 0.133333 0.1 

20 

0.438859 0.838541 1.23856 0.466928 0.47735 

0.08 0.08 0.08 0.0444444 0.0307692 

50 

0.474004 0.928107 1.37994 0.48513 0.49038 

0.0363636 0.0363636 0.0363636 0.0190476 0.0129032 

 

 

Table ٤: Estimates of β and Risk under QLF using Inverse Gamma prior (1, 1) 

m = 1 and a = 1 

N 

α = 0.5 

β = 0.5 

α = 0.5 

β = 1 

α = 0.5 

β = 1.5 

α = 1 

β = 0.5 

α = 1.5 

β = 0.5 

5 

0.350399 0.599512 0.849048 0.403354 0.425747 

0.2 0.2 0.2 0.133333 0.1 

20 

0.441245 0.838993 1.23846 0.466679 0.47636 

0.08 0.08 0.08 0.0444444 0.0307692 

50 

0.473473 0.929581 1.38283 0.48672 0.490318 

0.0363636 0.0363636 0.0363636 0.0190476 0.0129032 

  

Table ٥: Estimates of β and Risk under SELF using Inverse Chi square prior (V = 0.5) 

N 

α = 0.5  

β = 0.5 

α = 0.5 

 β = 1 

α = 0.5 

 β = 1.5 

α = 1  

β = 0.5 

α = 1.5 

 β = 0.5 

5 

0.995077 1.71861 2.42647 0.710195 0.630849 

9.29869 29.5747 60.1325 0.267994 0.0974525 

20 

0.592833 1.13868 1.6801 0.544886 0.52987 

0.0548621 0.204099 0.445128 0.0184359 0.0108005 

50 

0.536827 1.05025 1.56593 0.518855 0.510887 

0.0136854 0.0524768 0.116734 0.00586399 0.00368508 

 

Table ٦: Estimates of β and Risk under SELF using Inverse Chi square prior (V = 1.5) 

N 

α = 0.5  

β = 0.5 

α = 0.5 

 β = 1 

α = 0.5 

 β = 1.5 

α = 1  

β = 0.5 

α = 1.5 

 β = 0.5 

5 

0.772747 1.33228 1.89917 0.635546 0.589214 

-2.86833 -9.11283 -18.7152 0.204149 0.0807202 

20 0.563109 1.06989 1.5916 0.531907 0.521022 
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0.0473119 0.172227 0.381938 0.0171408 0.0102675 

50 

0.525267 1.0317 1.54029 0.513635 0.508511 

0.0128524 0.0496912 0.110915 0.00569308 0.00362515 

 

Table ٧: Estimates of β and Risk under QLF using Inverse Chi square prior (V = 0.5) 

N 

α = 0.5  

β = 0.5 

α = 0.5 

 β = 1 

α = 0.5 

 β = 1.5 

α = 1  

β = 0.5 

α = 1.5 

 β = 0.5 

5 

0.777617 1.31973 1.88289 0.630672 0.588436 

-2.91227 -8.86796 -18.6118 0.201394 0.0804884 

20 

0.562687 1.07808 1.59438 0.530682 0.520414 

0.0473316 0.174819 0.383587 0.0170813 0.0102467 

50 

0.524947 1.0333 1.53551 0.510894 0.509592 

0.012844 0.0498732 0.110045 0.00563079 0.00364042 

 

Table ٨: Estimates of β and Risk under QLF using Inverse Chi square prior (V = 1.5) 

N 

α = 0.5  

β = 0.5 

α = 0.5 

 β = 1 

α = 0.5 

 β = 1.5 

α = 1  

β = 0.5 

α = 1.5 

 β = 0.5 

5 

0.410983 0.707766 1.004 0.444051 0.461136 

0.235294 0.235294 0.235294 0.148148 0.108108 

20 

0.468479 0.898738 1.32276 0.482734 0.487657 

0.0851064 0.0851064 0.0851064 0.045977 0.0314961 

50 

0.484461 0.953276 1.41889 0.491984 0.495538 

0.0373832 0.0373832 0.0373832 0.0193237 0.0130293 

 

4. Results and Discussion of Findings 

It is observed from the analysis that the Bayes estimate increases as the sample size increases 

tending to the actual value of scale parameter for all priors as well as the loss functions. For 

inverse gamma prior using SELF, the Bayes estimate and posterior risk increase when the shape 

parameter increases and also when it is fixed. The posterior risk decreases with increase in 

sample size for SELF, QLF and both priors. The posterior risks remain constant when the shape 

parameter is fixed, and also decreases with increase in the shape parameter when the scale 

parameter is fixed. For inverse Chi-square prior with hyper parameter (v), the posterior risk 

decreases with increase in the values of hyper parameter, this property holds for QLF. 

However, the estimates under QLF produces least amount of posterior risk under both inverse 

gamma and inverse chi square prior respectively, but the QLF under inverse chi-square prior 

produce least posterior risk than SELF of both priors including QLF under inverse gamma 

prior.  

5. Conclusion 

The aim of this research work was to estimate the scale parameter of Log gamma distribution 

by using inverse gamma and inverse chi square priors under the Quadratic and Squared error 

loss function respectively. However, Bayes estimate decreases as the size of the sample 

increases tending to the actual value of scale parameter. Hence the consistence of the Bayes 

estimate was proved matched with the theory of Bayesian analysis. Keeping the scale 

parameter consisted, the posterior risk decreases and the shape parameter increases under all 
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priors and loss functions. However, inverse chi square prior performs better than inverse 

gamma prior, similarly, the posterior risk for QLF is least compared with that under SELF. 

Hence Quadratic loss function appeared to be best when inverse chi square prior is used.  

Author’s contribution 

1 The Posterior distributions using both inverse Gamma and inverse Chi-Square priors 

are derived by Gambo S. A.   

2 The Bayes estimators under SELF using both inverse Gamma and inverse Chi-square 

are derived by Hussain Y. 

3  The Bayes estimators under QLF using both inverse Gamma and inverse Chi-square 

are derived by Abba S. A. 

4 The Posterior risk under SELF and QLF using both inverse Gamma and inverse Chi-

square are derived by Isa I. 

5 The analysis, conclusion and references are prepared by Luqman A.  

Area of Further Research 

In step with this research work, further research can be done towards Posterior analysis of log 

gamma distribution using different prior and loss function, because, better combination of 

priors & loss functions may be outside the subjected one used for this study. 
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